
MODULE III

Syllabus

 Input/Output:

 Stream classes (byte stream and character stream classes)

 reading console input.

 Files

 Input refers to flow of data into a program and output means flow of

data out of a program.

 Input to a program may come from various sources like keyboard,

mouse, memory, disk, network.

 Output of a program may go to several destinations like screen,

printer, memory, disk, network.

 Data that is transferred is treated as a sequence of bytes or characters.

 Java uses concept of streams to represent ordered sequence of data.

IO Basics : Streams

 Java programs perform I/O through streams.

 A stream presents a uniform, easy-to-use, object-oriented interface

between the program and the i/o devices. It is an abstraction that

either produces or consumes information.

 A stream is linked to a physical device by the Java I/O system.

 All streams behave in the same manner, even if the actual physical

devices to which they are linked differ. Thus, the same I/O classes

and methods can be applied to any type of device.

 Java implements streams within java.io package.

 Java streams are classified into two basic types:

 Input stream

 Output stream

 An input stream extracts(or reads) data from source(file) and sends it

to the program. Similarly an output stream takes data from the

program and sends it to the destination(file).

 Java.io package contains a large number of stream classes that

provide capabilities for processing all types of data.

 Stream classes are categorized into two types based on the data on

which they operate. They are:

 Byte Stream : Used for reading or writing binary data.

 CharacterStream : Used for handling input and output of characters.

They use unicode.

 At the lowest level, all I/O is byte-oriented.

6

Java Stream Classes Hierarchy

7

Byte Streams Classes

 Two abstract classes for Byte streams :

 InputStream

 OutputStream

 These classes define several key methods that the other stream
classes implement.

 Eg: read() and write(), which, respectively, read and write
bytes of data. Both methods are declared as abstract. They are
overridden by derived stream classes.

 Each of these abstract classes has several concrete subclasses,
that handle various devices, such as disk files, network
connections, memory buffers etc.

 Java.io package has to be imported to use stream classes.

9

InputStream class

➢ InputStream class is an abstract class.

➢ It is the superclass of all classes representing an input stream

of bytes.

10

11

OutputStream class

➢ It is the superclass of all classes representing an output stream

of bytes.

➢ It is an abstract class.

➢An output stream accepts output bytes and sends them to some

sink.

12

13

Byte Stream Classes

Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods for reading the Java standard data types

DataOutputStream An output stream that contains methods for writing the Java standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and println()

PushbackInputStream Input stream that supports one-byte “unget,” which returns a byte to the input stream

RandomAccessFile Supports random access file I/O

SequenceInputStream Input stream that is a combination of two or more input streams that will be read

sequentially, one after the other

15

BufferedInputStream Class

 The BufferedInputStream class of the java.io package is used with

other input streams to read the data (in bytes) more efficiently.

 It extends the InputStream abstract class.

Working of BufferedInputStream

 The BufferedInputStream maintains an internal buffer of 8192

bytes.

 During the read operation in BufferedInputStream, a chunk of

bytes is read from the disk and stored in the internal buffer. And

from the internal buffer bytes are read individually.

 Hence, the number of communication to the disk is reduced. This

is why reading bytes is faster using the BufferedInputStream.

16

BufferedInputStream

▪ In order to create a BufferedInputStream, we must import

the java.io.BufferedInputStream package first. Once we import the

package here is how we can create the input stream.

Example

//Creates a FileInputStream

FileInputStream file = new FileInputStream(String path);

// Creates a BufferedInputStream

BufferedInputStream buffer = new BufferInputStream(file);

In the above example, we have created a BufferdInputStream

named buffer with the FileInputStream named file.

 Here, the internal buffer has the default size of 8192 bytes. However,

we can specify the size of the internal buffer as well.

 // Creates a BufferedInputStream with specified size internal buffer

BufferedInputStream buffer = new BufferInputStream(file, int size);

 The buffer will help to read bytes from the files more quickly.

17

 Example using DataInputStream class of Byte Stream
Classes

➢Java DataInputStream class allows an application to read primitive data

from the input stream in a machine-independent way.
import java.io.*;

class inout

{

public static void main(String args[])throws IOException

{ int roll;

String name;

DataInputStream d=new DataInputStream(System.in);

System.out.println("Enter Roll No");

roll=Integer.parseInt(d.readLine());

System.out.println("Enter name");

name=d.readLine();

System.out.println("ROLL : "+roll);

System.out.println("NAME : "+name);

} //readLine() is a function in DataInputStream

} //class and return type is String

19

 Example using ByteArrayInputStream class

The ByteArrayInputStream is composed of two words: ByteArray and

InputStream. As the name suggests, it can be used to read byte array as input

stream.

Java ByteArrayInputStream class contains an internal buffer which is used

to read byte array as stream. In this stream, the data is read from a byte array.
/* This example demonstrates how to read one byte from the input stream at a time. */

import java.io.*;

public class ReadByteStreams

{ public static void main(String args[])throws IOException

{ String str = args[0];

byte b[] = str.getBytes();

ByteArrayInputStream bais = new ByteArrayInputStream(b);

int r;

while ((r = bais.read()) != -1)

{ System.out.print((char) r + " "); }

}

}

Predefined Streams

 java.lang package defines a class called System which is automatically

imported.

 System contains three predefined public and static stream variables: in,

out, and err

 public static InputStream in − It is the "standard" input stream.

 public static PrintStream out − It is the "standard" output stream.

 public static PrintStream err − It is the "standard" error output

stream.

 System.in refers to standard input stream, which is the keyboard by

default. It enables the program to read data from keyboard.

 System.out refers to the standard output stream. By default, this is the

console.

 System.err refers to the standard error stream, which also is the

console by default.

 System.in is an object of type InputStream.

 System.out and System.err are objects of type PrintStream

Example

➢The code to print output and an error message to the

console.

System.out.println("simple message");

System.err.println("error message");

➢The code to get input from console.

int i=System.in.read(); //returns ASCII code of 1st

character

22

Character Stream Classes

 Two abstract classes for Character streams :

 Reader

 Writer

 These abstract classes handle Unicode character streams.

 These classes define several key methods that the other
stream classes implement.

 Eg: read() and write(), are methods which read and write
characters of data, respectively. These methods are
overridden by derived stream classes.

Character Stream Classes

Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input stream that reads from a character array

CharArrayWriter Output stream that writes to a character array

FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates characters to bytes

PipedReader Input pipe refers to stream between threads for inter thread communication

PipedWriter Output pipe refers to stream between threads for inter thread communication

PrintWriter Output stream that contains print() and println()

PushbackReader Input stream that allows characters to be returned to the input stream

Reader Abstract class that describes character stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output

Reading Console Inputs
 In Java, there are three different ways for reading input from the user in the

command line environment(console).

➢Using Buffered Reader Class

➢Using Scanner Class

➢Using Console Class

1.Using Buffered Reader Class

 The following line of code creates a BufferedReader that is

connected to the keyboard:

 BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

BufferedReader- buffers the input charater stream

 Now br is a character-based stream that is linked to the console
through System.in.

System.in - console input byte stream

InputStreamReader - converts bytes to char

import java.io.*;

class Test

{

public static void main(String args[]) throws IOException

{

//Enter data using BufferReader

BufferedReader reader = new BufferedReader(new

InputStreamReader(System.in));

// Reading data using readLine

String name = reader.readLine();

// Printing the read line

System.out.println(name); }

}

This method is used by wrapping the System.in (standard input stream) in an

InputStreamReader which is wrapped in a BufferedReader. We can read input from

the user in the command line.

• Advantage - The input is buffered for efficient reading

• Drawback - The wrapping code is hard to remember.

2. Using Scanner Class

• This is probably the most preferred method to take input.

• The main purpose of the Scanner class is to parse primitive types

and strings using regular expressions, however it is also can be

used to read input from the user in the command line.

Advantages: • Convenient methods for parsing primitives

(nextInt(), nextFloat(), …) from the tokenized input.

• Regular expressions can be used to find tokens.

Drawback:

• The reading methods are not synchronized
27

▪ The Scanner class is used is found in the java.util package.

Example

import java.util.Scanner;

class GetInputFromUser {

public static void main(String args[]) {

// Using Scanner for Getting Input from User

Scanner in = new Scanner(System.in);

String s = in.nextLine();

System.out.println("You entered string "+s);

int a = in.nextInt();

System.out.println("You entered integer "+a);

} }
28

3. Using Console Class

▪ The Java Console class is be used to get input from console. It

provides methods to read texts and passwords.

Advantages:

▪ Reading password without echoing the entered characters.

▪ Reading methods are synchronized.

▪ Format string syntax can be used.

Drawback:

▪ Does not work in non-interactive environment (such as in an

IDE).

29

// Java program to demonstrate working of System.console()

// Note that this program does not work on IDEs as

//System.console() may require console.

Example

public class Sample {

public static void main(String[] args) {

System.out.println(“Enter name");

String name = System.console().readLine();

System.out.println(name);

System.out.println(“Enter password");

char pass[]=System.console().readPassword();

System.out.println(pass);

} } // Console class supplies no constructors. Instead, a

//Console object is obtained by calling System.console()
30

Comparing Byte Stream classes and Character

Stream classes

31

Reading a Character

 read()

int read() throws IOException

 Reads a character from the input stream and returns an integer

value.

 It returns –1 when the end of the stream is encountered.

import java.io.*;

class BRRead

{ public static void main(String args[]) throws IOException

{ char c;

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter characters, 'q' to quit.");

do

{

c = (char) br.read();

System.out.println(c);

} while(c != 'q');

}

}

Output:

Enter characters, 'q' to quit.
123abcq
1
2
3
a
b
c
q

Reading a String

 readLine()

String readLine() throws IOException

import java.io.*;

class BRReadLines

{ public static void main(String args[]) throws IOException

{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

String str;

System.out.println("Enter lines of text.");

System.out.println("Enter 'stop' to quit.");

do

{

str = br.readLine();

System.out.println(str);

} while(!str.equals("stop"));

}

}

Q) Write a program to read 100 lines of text or until stop

is entered and store it in an array. Display the array.

//A tinyText Editor

import java.io.*;

classTinyEdit

{ public static void main(String args[]) throws IOException

{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

String str[] = new String[100];

System.out.println("Enter lines of text.");

System.out.println("Enter 'stop' to quit.");

for(int i=0; i<100; i++)

{

str[i] = br.readLine();

if(str[i].equals("stop")) break;

}

System.out.println("\nHere is your array:");

for(int i=0; i<100; i++)

{

if(str[i].equals("stop")) break;

System.out.println(str[i]);

}

}

}

Writing Console Outputs

➢ In Java there are three different ways for writing to the console

➢ PrintStream class

➢ PrintWriter class

➢ Console class

 Console output is obtained with print() and println() methods defined by

PrintStream class(which is the type of object referenced by System.out)

 PrintStream also implements write().

 write() can be used to write to the console.

void write(int byteval)

 This method writes to the stream the byte specified by byteval.

 byteval is declared as an integer, only the low-order eight bits are written.

class WriteDemo

{ public static void main(String args[]) {

int b;

b = 'A';

System.out.write(b);

System.out.write('\n'); }

}

PrintWriter Class

 The recommended method of writing to the console is through a

PrintWriter stream.

 It is used to print the formatted representation of objects to the text-

output stream.

 Class declaration

public class PrintWriter extends Writer

 PrintWriter is the character-based classes.

39

PrintWriter(OutputStream outputStream, boolean

flushOnNewline) – This is one of the constructor of

PrintWriter class.

 flushOnNewline controls whether Java flushes the

output stream every time a println() method is

called. If flushOnNewline is true, flushing

automatically takes place. If false, flushing is not

automatic.

Example

PrintWriter pw = new PrintWriter(System.out, true);

40

import java.io.*;

public class PrintWriterDemo

{

public static void main(String args[])

{

PrintWriter pw = new PrintWriter(System.out, true);

pw.println("This is a string");

int i = -7;

pw.println(i);

double d = 4.5e-7;

pw.println(d);

}

} //if new PrintWriter(System.out, false) , then flushing is not automatic

Output:

This is a string
-7
4.5E-7

We can also use the Console class to write output to the console, for

example, using the printf() method with a String argument:

Example: console.printf(progLanguauge + " is very interesting!");

SERIALIZATION

 Java provides a mechanism, called object serialization where an object

can be represented as a sequence of bytes that includes the object's data

as well as information about the object's type and the types of data

stored in the object.

 After a serialized object has been written into a file, it can be read from

the file and deserialized that is, the type information and bytes that

represent the object and its data can be used to recreate the object in

memory.

 For serializing the object, we call the writeObject() method of

ObjectOutputStream, and for deserialization we call the readObject()

method of ObjectInputStream class.

 Most impressive is that the entire process is JVM independent, meaning

an object can be serialized on one platform and deserialized on an

entirely different platform.

 Classes ObjectInputStream and ObjectOutputStream are high-

level streams that contain the methods for serializing and deserializing an

object.42

• We must have to implement the Serializable interface for

serializing the object.

Advantages of Java Serialization

• It is mainly used to travel object's state on the network (which

is known as marshaling).

43

ObjectOutputStream class

➢The ObjectOutputStream class is used to write primitive

data types, and Java objects to an OutputStream.

➢ Only objects that support the java.io.Serializable interface

can be written to streams.

44

ObjectInputStream class

➢ An ObjectInputStream class deserializes objects and primitive

data written using an ObjectOutputStream.

45

Example of Java Serialization

In this example, we are going to serialize the object of Student

class. The writeObject() method of ObjectOutputStream

class provides the functionality to serialize the object. We are

saving the state of the object in the file named f.txt.

46

import java.io.*; Serialize.java

class Student implements Serializable{

String name;

int y;

Student(int roll,String s){

this.y=roll;

this.name=s;}

}

class Serialize{

public static void main(String args[]) throws IOException{

Student s1=new Student(111,"Anu");

FileOutputStream fout=new FileOutputStream("f.txt");

ObjectOutputStream out=new ObjectOutputStream(fout);

out.writeObject(s1);

out.flush();

out.close();

System.out.println("success");

}

} //o/p success47

import java.io.*; DeSerialize.java

class Student implements Serializable{

String name;

int y;

Student(int roll,String s){

this.y=roll;

this.name=s;}

}

class DeSerialize{

public static void main(String args[]) throws IOException

,ClassNotFoundException {

Student s1=null;

FileInputStream fout=new FileInputStream("f.txt");

ObjectInputStream out=new ObjectInputStream(fout);

s1=(Student)out.readObject();

System.out.println(s1.name); o/p Anu

System.out. println(s1.y); 111
}

}
48

WORKING WITH FILES

 File handling is an important part of any application.

 Java has several methods for creating, reading, updating, and

deleting files.

 The File class from the java.io package, allows us to work

with files.

 To use the File class, create an object of the class, and specify

the filename or directory name:

Example

49

50

 The File class has many useful methods for creating and getting

information about files. For example:

Create a File

➢To create a file in Java, you can use the createNewFile()

method.

➢ This method returns a boolean value: true if the file was

successfully created, and false if the file already exists.

Example

import java.io.*;

public class CreateFile{

public static void main(String args[])throws IOException{

File ob=new File("File1.txt");

ob.createNewFile();

System.out.println("created “ + ob.getName());

} } //o/p created File1.txt
51

Write to a File using FileWriter class

➢ In the following example, we use the FileWriter class together

with its write() method to write some text to the file we

created in the example above.
➢ void write(String text)It is used to write the string into FileWriter.

➢Note that when we are done writing to the file, we should close

it with the close() method:

Example

import java.io.*;

public class WriteFile{

public static void main(String args[])throws IOException{

FileWriter wr=new FileWriter("ob.txt");

wr.write("hai hello"); //writes hai hello to the file ob.txt

wr.close();

} }52

53

Write to a File using FileOutputStream class

 To write to a file, defined by FileOutputStream.

void write(int byteval) throws IOException

 Writes the byte specified by byteval to the file. If an error

occurs during writing, an IOException is thrown.

Example
import java.io.*;

public classWriteFileOutputStream {

public static void main(String[] args) throws IOException{

FileOutputStream out=new FileOutputStream("ob.txt");

String str="HelloWorld";

byte[] strToBytes = str.getBytes();;

out.write(strToBytes);

out.close();

}

}

Read from a File using FileReader class
➢ In the following example, we use the FileReader class together

with its read() method to read data from the file.
➢ int read()It is used to return a character in ASCII form. It returns -1 at

the end of file.

Example

import java.io.*;

public class ReadFileReader {

public static void main(String args[])throws IOException{

FileReader fr=new FileReader("ob.txt");

int i;

while((i=fr.read())!=-1)

System.out.print((char)i);

fr.close();

}

}

54

55

Read from a File using FileInputStream class

➢ To read from a file, defined by FileInputStream

int read() throws IOException

➢ It reads a single byte from the file and returns the byte as an integer
value. read() returns –1 when the end of the file is encountered.

Example

import java.io.*;

public class ReadFileInputStream {

public static void main(String args[]) throws IOException{

FileInputStream fin=new FileInputStream("ob.txt");

int i=0;

while((i=fin.read())!=-1){

System.out.print((char)i);}

fin.close();

}

}

Read from a File using Scanner class
Example
import java.io.*;

import java.util.*;

public class ReadFileScanner {

public static void main(String[] args) {

try {

Scanner scanner = new Scanner(new File("ob.txt"));

while (scanner.hasNextLine()) {

System.out.println(scanner.nextLine());

}

scanner.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

}

}

}56

57

58

Deleted the file:

filename.txt

59

Deleted the folder: Test

Example :

Write a program that uses read() to input from a file

specified as command line argument. Display the

contents of the text file.

import java.io.*;

class ShowFile

{ public static void main(String args[]) throws IOException

{

int i;

FileInputStream fin;

fin = new FileInputStream(args[0]);

do

{ i = fin.read();

if(i != -1) System.out.print((char) i);

} while(i != -1);

fin.close();

}

} // java ShowFile ob.txt

Q1)Write a program to copy contents from one file to another

file using command line arguments.

import java.io.*;

class CopyFile

{ public static void main(String args[]) throws IOException

{ int i;

FileInputStream fin;

FileOutputStream fout;

fin = new FileInputStream(args[0]);

fout = new FileOutputStream(args[1]);

do

{

i = fin.read();

if(i != -1)

fout.write(i); args[0] args[1]

} while(i != -1);

fin.close();

fout.close(); // java CopyFile ob1.txt ob2.txt

} }

TUTORIAL

Q1)Write a program to create a file that could store details of three

students. Details include rollno, name and address and are provided

through keyboard.

Q2) Write a Java program that accepts N integers through console and

sort them in ascending order.

Q3) Write a java program that accepts integers from a file and display

their sum.

Q4)Write a program to count the number of words in a text file.

Q5) Write a program to read product code and name from keyboard

and write it to a file

